Cloud Deployment
Scale your quantitative finance applications to the cloud with VectorAlpha's production-ready deployment strategies.
Cloud-Native Ready
VectorAlpha is designed for cloud deployment with support for Kubernetes, serverless functions, and auto-scaling. Our benchmarks show linear scaling up to 1000+ containers for massive parallel backtesting operations.
Container Setup
Optimized Docker Images
Build production-ready containers optimized for VectorAlpha workloads:
# Multi-stage build for minimal image size
# Build stage
FROM rust:1.75-slim as builder
WORKDIR /app
# Install dependencies for compilation
RUN apt-get update && apt-get install -y pkg-config libssl-dev && rm -rf /var/lib/apt/lists/*
# Copy manifests
COPY Cargo.toml Cargo.lock ./
# Build dependencies (cache layer)
RUN mkdir src && echo "fn main() {}" > src/main.rs && cargo build --release && rm -rf src
# Copy source code
COPY src ./src
# Build application
RUN cargo build --release --bin vectoralpha-service
# Runtime stage
FROM debian:bookworm-slim
# Install runtime dependencies
RUN apt-get update && apt-get install -y ca-certificates libssl3 && rm -rf /var/lib/apt/lists/*
# Create non-root user
RUN useradd -m -u 1001 vectoralpha
# Copy binary from builder
COPY --from=builder /app/target/release/vectoralpha-service /usr/local/bin/
# Set ownership
RUN chown vectoralpha:vectoralpha /usr/local/bin/vectoralpha-service
USER vectoralpha
EXPOSE 8080
CMD ["vectoralpha-service"]
Service Configuration
Code Example Coming Soon
Full code examples with syntax highlighting will be available in the next update.
Kubernetes Deployment
Deployment Configuration
# vectoralpha-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: vectoralpha-service
labels:
app: vectoralpha
component: api
spec:
replicas: 3
selector:
matchLabels:
app: vectoralpha
component: api
template:
metadata:
labels:
app: vectoralpha
component: api
spec:
containers:
- name: vectoralpha
image: vectoralpha/service:latest
ports:
- containerPort: 8080
name: http
env:
- name: RUST_LOG
value: "info"
- name: CACHE_URL
valueFrom:
secretKeyRef:
name: vectoralpha-secrets
key: cache-url
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "2000m"
livenessProbe:
httpGet:
path: /health
port: http
initialDelaySeconds: 10
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: http
initialDelaySeconds: 5
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: vectoralpha-service
spec:
selector:
app: vectoralpha
component: api
ports:
- port: 80
targetPort: 8080
protocol: TCP
type: ClusterIP
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: vectoralpha-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: vectoralpha-service
minReplicas: 3
maxReplicas: 100
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
behavior:
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 100
periodSeconds: 15
- type: Pods
value: 4
periodSeconds: 15
scaleDown:
stabilizationWindowSeconds: 300
High-Performance Job Processing
# backtest-job.yaml
apiVersion: batch/v1
kind: Job
metadata:
name: backtest-processor
spec:
parallelism: 10
completions: 100
backoffLimit: 3
template:
spec:
containers:
- name: backtest
image: vectoralpha/backtest:latest
resources:
requests:
memory: "4Gi"
cpu: "2000m"
nvidia.com/gpu: 1 # GPU acceleration
limits:
memory: "8Gi"
cpu: "4000m"
nvidia.com/gpu: 1
env:
- name: STRATEGY_CONFIG
valueFrom:
configMapKeyRef:
name: strategy-config
key: config.json
- name: DATA_SOURCE
value: "s3://market-data/historical/"
restartPolicy: OnFailure
nodeSelector:
workload-type: compute-optimized
Cloud Provider Integration
AWS Deployment
# Deploy to EKS using eksctl
export CLUSTER_NAME="vectoralpha-cluster"
export REGION="us-east-1"
# Create EKS cluster optimized for compute
eksctl create cluster --name $CLUSTER_NAME --region $REGION --nodegroup-name compute-nodes --node-type c6i.4xlarge --nodes 3 --nodes-min 3 --nodes-max 20 --managed
# Create GPU node group for ML workloads
eksctl create nodegroup --cluster $CLUSTER_NAME --name gpu-nodes --node-type g4dn.xlarge --nodes 0 --nodes-min 0 --nodes-max 10 --node-labels workload-type=gpu-compute --node-taints nvidia.com/gpu=true:NoSchedule
# Install NVIDIA device plugin
kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.14.0/nvidia-device-plugin.yml
# Deploy application
kubectl apply -f vectoralpha-deployment.yaml
AWS Services Integration
Code Example Coming Soon
Full code examples with syntax highlighting will be available in the next update.
Google Cloud Platform
# Deploy to GKE with Autopilot
gcloud container clusters create-auto vectoralpha-cluster --region=us-central1 --network=vectoralpha-vpc --enable-private-nodes --enable-private-endpoint
# Configure workload identity
kubectl annotate serviceaccount vectoralpha-sa iam.gke.io/gcp-service-account=vectoralpha@PROJECT_ID.iam.gserviceaccount.com
# Deploy with Cloud Run for serverless
gcloud run deploy vectoralpha-api --image gcr.io/PROJECT_ID/vectoralpha:latest --platform managed --region us-central1 --memory 2Gi --cpu 2 --min-instances 1 --max-instances 100 --concurrency 1000
Serverless Architecture
Deploy compute-intensive workloads using serverless functions for cost optimization:
Code Example Coming Soon
Full code examples with syntax highlighting will be available in the next update.
Terraform Infrastructure
# main.tf
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
# Lambda function
resource "aws_lambda_function" "indicator_calculator" {
filename = "target/lambda/indicator-calculator.zip"
function_name = "vectoralpha-indicator-calculator"
role = aws_iam_role.lambda_role.arn
handler = "bootstrap"
runtime = "provided.al2"
memory_size = 3008
timeout = 60
environment {
variables = {
RUST_LOG = "info"
}
}
reserved_concurrent_executions = 100
}
# API Gateway
resource "aws_apigatewayv2_api" "vectoralpha" {
name = "vectoralpha-api"
protocol_type = "HTTP"
cors_configuration {
allow_origins = ["https://app.vectoralpha.com"]
allow_methods = ["POST", "GET"]
allow_headers = ["content-type"]
max_age = 300
}
}
# DynamoDB for caching
resource "aws_dynamodb_table" "indicator_cache" {
name = "vectoralpha-indicator-cache"
billing_mode = "PAY_PER_REQUEST"
hash_key = "cache_key"
attribute {
name = "cache_key"
type = "S"
}
ttl {
attribute_name = "ttl"
enabled = true
}
}
Monitoring and Observability
Prometheus Metrics
Code Example Coming Soon
Full code examples with syntax highlighting will be available in the next update.
Production Tips
For production deployments: Use managed Kubernetes services (EKS, GKE, AKS) for easier operations. Implement circuit breakers for external dependencies. Set up distributed tracing with OpenTelemetry. Use horizontal pod autoscaling based on custom metrics. Implement proper secret management with tools like Vault or cloud provider secret managers.
Cost Optimization
Cloud Cost Comparison
Workload Type | AWS | GCP | Azure |
---|---|---|---|
API Service (3 replicas) | $180/mo | $165/mo | $175/mo |
Batch Processing (100 jobs/day) | $450/mo | $420/mo | $440/mo |
GPU Workloads (10 hrs/day) | $650/mo | $600/mo | $680/mo |
Serverless (1M requests) | $35/mo | $32/mo | $38/mo |
Estimates based on typical quantitative finance workloads with standard configurations