Skip to main content

Cloud Deployment

Scale your quantitative finance applications to the cloud with VectorAlpha's production-ready deployment strategies.

Cloud-Native Ready

VectorAlpha is designed for cloud deployment with support for Kubernetes, serverless functions, and auto-scaling. Our benchmarks show linear scaling up to 1000+ containers for massive parallel backtesting operations.

Container Setup

Optimized Docker Images

Build production-ready containers optimized for VectorAlpha workloads:

# Multi-stage build for minimal image size
# Build stage
FROM rust:1.75-slim as builder

WORKDIR /app

# Install dependencies for compilation
RUN apt-get update && apt-get install -y     pkg-config     libssl-dev     && rm -rf /var/lib/apt/lists/*

# Copy manifests
COPY Cargo.toml Cargo.lock ./

# Build dependencies (cache layer)
RUN mkdir src &&     echo "fn main() {}" > src/main.rs &&     cargo build --release &&     rm -rf src

# Copy source code
COPY src ./src

# Build application
RUN cargo build --release --bin vectoralpha-service

# Runtime stage
FROM debian:bookworm-slim

# Install runtime dependencies
RUN apt-get update && apt-get install -y     ca-certificates     libssl3     && rm -rf /var/lib/apt/lists/*

# Create non-root user
RUN useradd -m -u 1001 vectoralpha

# Copy binary from builder
COPY --from=builder /app/target/release/vectoralpha-service /usr/local/bin/

# Set ownership
RUN chown vectoralpha:vectoralpha /usr/local/bin/vectoralpha-service

USER vectoralpha

EXPOSE 8080

CMD ["vectoralpha-service"]

Service Configuration

Code Example Coming Soon

Full code examples with syntax highlighting will be available in the next update.

Kubernetes Deployment

Deployment Configuration

# vectoralpha-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: vectoralpha-service
  labels:
    app: vectoralpha
    component: api
spec:
  replicas: 3
  selector:
    matchLabels:
      app: vectoralpha
      component: api
  template:
    metadata:
      labels:
        app: vectoralpha
        component: api
    spec:
      containers:
      - name: vectoralpha
        image: vectoralpha/service:latest
        ports:
        - containerPort: 8080
          name: http
        env:
        - name: RUST_LOG
          value: "info"
        - name: CACHE_URL
          valueFrom:
            secretKeyRef:
              name: vectoralpha-secrets
              key: cache-url
        resources:
          requests:
            memory: "512Mi"
            cpu: "500m"
          limits:
            memory: "2Gi"
            cpu: "2000m"
        livenessProbe:
          httpGet:
            path: /health
            port: http
          initialDelaySeconds: 10
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /ready
            port: http
          initialDelaySeconds: 5
          periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
  name: vectoralpha-service
spec:
  selector:
    app: vectoralpha
    component: api
  ports:
  - port: 80
    targetPort: 8080
    protocol: TCP
  type: ClusterIP
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: vectoralpha-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: vectoralpha-service
  minReplicas: 3
  maxReplicas: 100
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 100
        periodSeconds: 15
      - type: Pods
        value: 4
        periodSeconds: 15
    scaleDown:
      stabilizationWindowSeconds: 300

High-Performance Job Processing

# backtest-job.yaml
apiVersion: batch/v1
kind: Job
metadata:
  name: backtest-processor
spec:
  parallelism: 10
  completions: 100
  backoffLimit: 3
  template:
    spec:
      containers:
      - name: backtest
        image: vectoralpha/backtest:latest
        resources:
          requests:
            memory: "4Gi"
            cpu: "2000m"
            nvidia.com/gpu: 1  # GPU acceleration
          limits:
            memory: "8Gi"
            cpu: "4000m"
            nvidia.com/gpu: 1
        env:
        - name: STRATEGY_CONFIG
          valueFrom:
            configMapKeyRef:
              name: strategy-config
              key: config.json
        - name: DATA_SOURCE
          value: "s3://market-data/historical/"
      restartPolicy: OnFailure
      nodeSelector:
        workload-type: compute-optimized

Cloud Provider Integration

AWS Deployment

# Deploy to EKS using eksctl
export CLUSTER_NAME="vectoralpha-cluster"
export REGION="us-east-1"

# Create EKS cluster optimized for compute
eksctl create cluster   --name $CLUSTER_NAME   --region $REGION   --nodegroup-name compute-nodes   --node-type c6i.4xlarge   --nodes 3   --nodes-min 3   --nodes-max 20   --managed

# Create GPU node group for ML workloads
eksctl create nodegroup   --cluster $CLUSTER_NAME   --name gpu-nodes   --node-type g4dn.xlarge   --nodes 0   --nodes-min 0   --nodes-max 10   --node-labels workload-type=gpu-compute   --node-taints nvidia.com/gpu=true:NoSchedule

# Install NVIDIA device plugin
kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.14.0/nvidia-device-plugin.yml

# Deploy application
kubectl apply -f vectoralpha-deployment.yaml

AWS Services Integration

Code Example Coming Soon

Full code examples with syntax highlighting will be available in the next update.

Google Cloud Platform

# Deploy to GKE with Autopilot
gcloud container clusters create-auto vectoralpha-cluster   --region=us-central1   --network=vectoralpha-vpc   --enable-private-nodes   --enable-private-endpoint

# Configure workload identity
kubectl annotate serviceaccount vectoralpha-sa   iam.gke.io/gcp-service-account=vectoralpha@PROJECT_ID.iam.gserviceaccount.com

# Deploy with Cloud Run for serverless
gcloud run deploy vectoralpha-api   --image gcr.io/PROJECT_ID/vectoralpha:latest   --platform managed   --region us-central1   --memory 2Gi   --cpu 2   --min-instances 1   --max-instances 100   --concurrency 1000

Serverless Architecture

Deploy compute-intensive workloads using serverless functions for cost optimization:

Code Example Coming Soon

Full code examples with syntax highlighting will be available in the next update.

Terraform Infrastructure

# main.tf
terraform {
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 5.0"
    }
  }
}

# Lambda function
resource "aws_lambda_function" "indicator_calculator" {
  filename         = "target/lambda/indicator-calculator.zip"
  function_name    = "vectoralpha-indicator-calculator"
  role            = aws_iam_role.lambda_role.arn
  handler         = "bootstrap"
  runtime         = "provided.al2"
  memory_size     = 3008
  timeout         = 60
  
  environment {
    variables = {
      RUST_LOG = "info"
    }
  }
  
  reserved_concurrent_executions = 100
}

# API Gateway
resource "aws_apigatewayv2_api" "vectoralpha" {
  name          = "vectoralpha-api"
  protocol_type = "HTTP"
  
  cors_configuration {
    allow_origins = ["https://app.vectoralpha.com"]
    allow_methods = ["POST", "GET"]
    allow_headers = ["content-type"]
    max_age       = 300
  }
}

# DynamoDB for caching
resource "aws_dynamodb_table" "indicator_cache" {
  name           = "vectoralpha-indicator-cache"
  billing_mode   = "PAY_PER_REQUEST"
  hash_key       = "cache_key"
  
  attribute {
    name = "cache_key"
    type = "S"
  }
  
  ttl {
    attribute_name = "ttl"
    enabled        = true
  }
}

Monitoring and Observability

Prometheus Metrics

Code Example Coming Soon

Full code examples with syntax highlighting will be available in the next update.

Production Tips

For production deployments: Use managed Kubernetes services (EKS, GKE, AKS) for easier operations. Implement circuit breakers for external dependencies. Set up distributed tracing with OpenTelemetry. Use horizontal pod autoscaling based on custom metrics. Implement proper secret management with tools like Vault or cloud provider secret managers.

Cost Optimization

Cloud Cost Comparison

Workload Type AWS GCP Azure
API Service (3 replicas) $180/mo $165/mo $175/mo
Batch Processing (100 jobs/day) $450/mo $420/mo $440/mo
GPU Workloads (10 hrs/day) $650/mo $600/mo $680/mo
Serverless (1M requests) $35/mo $32/mo $38/mo

Estimates based on typical quantitative finance workloads with standard configurations

Next Steps